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Abstract: Propagation of electromagnetic waves over irregular, inhomogeneous terrain is
solved by a finite difference scheme. The method is fast and requires considerably less
memory than the integral equation methods. The method requires a storage space of
order O(N) and an execution time of order O(N?). Fields generated by a TE line source
are represented in an integral form in terms of the field over a flat, constant impedance
plane, and the field scattered by the terrain irregularities and inhmogeneities. Accurate
expressions are provided for the incident field and the Green’s function, whose evaluation
is otherwise accomplished by the rather time-consuming Sommerfeld’s integrals. Measured
equation of invariance is used to terminate the mesh. The sparse matrix generated by the
method is inverted by the Ricatti transform. Numerical results are presented for the ground
wave as well as the sky wave. Comparison is made for known geometries to establish the
validity and limitations of the method.
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I. INTRODUCTION

Electromagnetic wave propagation over hilly terrain is important not only in point-to-
point communication over land, but also in ground-to-air communication. Of late, it has
assumed importance in outdoor propagation in the context of personal communications
network design. An exact analytical solution of the problem for general terrain is not pos-
sible and one often resorts to an approximate or a numerical approach. In a previous paper
[1], we developed a numerical model for propagation predictions over inhomogeneous, ir-
regular‘terrain using the magnetic field integral equation. Although the method could
include all effects of wave propagation such as reflection, diffraction, surface wave excita-
tion, and backscattering, a principal limitation of the method was the requirement of large
computer resources (CPU time and memory), particularly for electrically large terrain ir-
regularities. For instance, if the integral equation is solved numerically by the method of
moments [2], the matrix fill time would be of order O(N?) and the inversion time of order
O(N?), where N is the total number of unknowns. As the matrix generated is dense, the
memory requirements would be of order O(N?). The method is attractive for small terrain

irregularities, but is computationally prohibitive for large terrain irregularities [1].

In this paper we present a computationally efficient model of wave propagation based
on finite differences. It may be noted that this method has no semblance to the one
proposed in [3], where one proceeds with the parabolic equation approximation of the
Helmholtz equation. Use of parabolic equation approximation precludes backscattering,
which is sometimes important. In contrast, we apply finite differences directly to the
Helmholtz equation without introducing any dubious approximations. Even though one
has to handle a larger matrix when dealing with finite differences in contrast to boundary
methods such as integral equation methods, the resulting matrix is sparse, and often faster
to invert than the dense matrix generated via the latter. The matrix fill time is still of
order O(N?), but the inversion time is reduced to a lower order of O(NV). Thus, the real
advantage of a finite difference scheme is felt for large problems where the run time is
dominated by the inversion time. Substantial savings in memory are also be accomplished
as the matrix is sparse. The memory required is only of order O(N). The method can

potentially solve larger problems than possible with the method of moments. The principal
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difficulty associated with the use of finite differences is the treatment of mesh truncation
when applied to open type of problems such as encountered in propagation, antennas, and
scattering. We will use a method known as the Measured Equation of Invariance (MEI)
originally proposed by Mei, et al., [4] to treat the mesh truncation.

The term scatterer will be used generically to denote an obstacle in an open envi-
ronment. Local radiation conditions such as those proposed in [5] and [6] are good when
the truncating boundary is far removed so that it is in the far-zone field. However, this
results in a larger matrix size with obvious implications to computational time and mem-
ory. Global type radiation conditions [7] can be used on a tighter terminating boundary
to result in a smaller computational domain. However, this will destroy the sparsity of the
matrix generated by finite differences and defeats the whole purpose of employing it in the
first place. What is needed is a local boundary condition of the type in [5], but applicable
very close to the scatterer. Although it is far more complex to find near field radiation
conditions than it is to find far field ones, it is partially offset by the fact that boundary
conditions on a continuous spatial domain are not needed when finite methods are used.
The MEI method enables one to generate the near-field conditions over a discrete domain.

In this paper we deal with only two-dimensional sources and fields, and one dimen-
sional terrain characteristics. Accordingly, the terrain properties, the sources, and the
corresponding fields are all invariant with respect to the longitudinal variable z. It is as-
sumed that the terrain is characterized by its local impedance and height over a reference
plane, both of which may vary from point to point. In section Ila, we present a finite dif-
ference discretization of the two dimensional Helmholtz equation and present an overview
of the present method. To realize the mesh termination conditions via the MEI method
described in IId, an accurate representation of the near-zone scattered field is necessary.
In section ITb we give an integral representation of the scattered field of a TE; line source
over an irregular, impedance surface. The corresponding expressions for the incident field
and the Green’s functions are presented in section Ilc. In section Ile, we describe the Ri-
catti block-by-block elimination technique [8] of sparse matrix inversion. Finally in section
I1I we present numerical results for both the sky wave and the ground wave and provide

comparisons for test geometries.




II. FORMULATION

In the present paper, we consider a two dimensional situation as shown in Fig. 1. The
transmitting antenna is a transversely polarized electric line source located at (z,,¥,).
Such a source will have its electric field confined to the transverse zy plane, and is the
two-dimensional counterpart of the superposition of a vertical electric dipole (VED) and
a horizontal electric dipole (HED) in three dimensions. The field due to the source can
be classified as TE,, and all components could be expressed in terms of the z-component,
H,, of the magnetic field. It is assumed that all distance variables are normalized with
respect to the free-space wavenumber k, = w,/po€,, Where w is the radian frequency of
the wave, ¢, is the permittivity, and p, the permeability of free-space. Accordingly, we set
T := koz, y := koy, etc. An e/“! time dependence is assumed and suppressed. For TE,
polarization, the impedance boundary condition [9] of the form 7 x E=n,Af x (7 x H )s
relating the electric field vector E to the magnetic field vector H leads to

OH,
on

:jAHza (1)

where the unit normal #i points out of the impedance surface, 7, = 1/#0/¢€, is the intrinsic

impedance of free space, and A is the normalized impedance of the surface.

ITa. Overview of the Method:

We let ¢ to denote the z-component of the scattered magnetic field due to a TE, Iine
source over an inhomogeneous, irregular terrain. We assume that 1 represents scattering
only from the irregularites and inhomogeneities in a reference impedance plane. Thus,
the scattered field is identically zero when the terrain is flat having an impedance equal
to the reference impedance. The scatterer then consists of those portions of the terrain
where (i) the impedance is different from the reference value, and (ii) the elevation is
different from zero. The computational domain consists of a region in space bounded by
the terrain at the bottom and a terminating (i.e., truncating) boundary at the top as
shown in Fig. 2. It is assumed that the boundary of the scatterer is subdivided into N —1
segments, thereby, generating N points on it. The terminating boundary is similarly
partitioned into N — 1 segments. We generate a structured mesh in the computational

domain by adding M interior layers between the object boundary and the terminating
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boundary, each having N points. A total of M + 2 layers, each having N points are
thus generated. Layer numbering is done in ascending order starting from the object
boundary (layer number 0) and progressing towards the terminating boundary. Node
numbering is done from left (number 1) to right (number N ). We use the notation (z7,, ym ),
m=0,1...,M+1, n=1,...,N to denote the cartesian coordinates of the nth point on
layer number m. Points on the layer immediately following the scatterer are assumed to
lie on the local normal emanating from a point on the scatterer. This is to permit easy
implementation of the impedance boundary condition of (1). Within the computational
domain, the scattered field ¢ satisfies the scalar Helmholtz equation
2 2

(Z5+57) ¥ +0=0 2)
Since the terrain irregularities do not necessaily conform to any one standard coordinate
system, the mesh is non-orthogonal, and traditional finite difference equations are not
~ applicable. We will develop the required finite difference equations similar to the method
outlined in [10]. Prompted by the presence of second order derivatives in the Helmholtz
equation, we choose a five-point star mesh centered at 0(Xy,Ys) and sorrounded by four
neighboring nodes with local coordinates (X1, Y), k=1,...,4, as shown in Fig. 3b. The
global indices of the nodes 0, 1, 2, 3, and 4 are (m,n),(m—1,n),(m+1,n),(m,n— 1), and
(m,n + 1) respectively. Using the notation in the local coordinates that ¢ = (X, Yx),

we assume a finite difference equation over the mesh in the form

4 .
Yo+ ) cxthr =0, (3)

k=1

where, ck, are unknown complex constants. The above equation can be rewritten as

ch-’i—z = —1. (4)

k=1
The coefficients are determined by choosing four linearly independent plane waves (i.e.,

trial solutions of (2)) traveling along the lines joining the central node to the four neigh-

boring nodes; i.¢., we choose

Ve _ midieos(on—an) =14 (5)
%o |




where (di,ax) are the polar coordinates of the neighboring nodes with respect to the
central node 0. The linear system of equations resulting from (4) can then be solved
for the unknowns c. It is interesting to note that the values for the coefficients reduce
to the standard values when the mesh conforms to a standard coordinate system. The
computational domain is open ended at the sides and one cannot choose a five-point star
mesh as above. At the two ends of the domain, a modified mesh as shown in Figs. 3a and
3¢ is used. For the mesh shown in Fig. 3a, it is possible that the plane waves traveling
along directions 3 and 4 become linearly dependent, or nearly so. To avoid this degeneracy,
we reverse the direction of the plane wave traveling along 0— 3 and solve the linear system.
Likewise, to avoid degeneracy with the mesh of Fig. 3c, we reverse the direction of the
plane wave traveling along 0 — 4 and solve for the coefficients.

At the lower (object) boundary of the computational domain, the impedance boundary
condition (1) is applicable to the total field H, = x + ¢, where x = H,, is the incident

field. For small distances, the solution of (1) along the normal results in

n n n ny, —jAT de n n n
U5 = —xg + (U7 + x5 )e T4 E —x + (W + X7)Bns (6)

where h, = 1/(z} — z8)? + (y] — y¢)? is the normal distance between scatterer and the
first interior layer at the nth node, A™ is the value of A, at the nth node, ¥y, = ¥(z7,, yr),
and x7, = x(z7,,ym)-

Additional conditions are needed at the artificial, terminating boundary. To simulate
free-space, boundary conditions proposed by Mei et al.,[4] are assumed to hold on the
boundary. Accordingly, on the five-point star mesh of Fig. 3b formed by layer numbers
M —1, M, and M + 1, the scattered field satisfies (in the local coordinates)

4
Yo+ ¥ arpr =0, (7)

k=1

where the complex coefficients aj, are different from ci. They are determined in a fashion
similar to the latter except that the trial solutions are no longer plane waves but are
dependent on the geometry of the scatterer and the location of the mesh. Such trial

solutions can be obtained from the near-zone behavior of the field and further discussed
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in section IId. It is important to note that a discrete equation of the form (7) over a five-
point computational molecule of Fig. 3 can only capture spatial derivatives upto second

order (without the cross terms). Equations (3), (6) and (7) are combined to result in a

matrix equation of the form

A, + B, ¥ + C, 92 = F! (8)
A0 14+ B, ¥" + C, U™ =F"  2<n<N-1 (9)
ANUN-t L ByON + CyON2 = FY, (10)
where W™ = [T, 97,..., 95" is the column vector of unknown values on the M interior

layers at the node n, A,,Bn,C, are banded matrices of order M x M given by

"0 0
3,n
0 ¢ ... 0
A.n = . . R . ) (11)
0 0 . a?cg"'l’n— gcgl'l’"
14 B, & 0 0
" 1 ar 0
B, = . . , (12)
00 . e oapd T ey
ci’" 0 0
0 ci’" 0
Cn = . . . . ) (13)
0 0 ... aje) ™" —ajcy V"

and F” is the excitation column vector given by
2,
-G *(BaxT — X5)

0
F" = : . (14)

0
In the above matrices, ;" is the kth finite difference coefficient associated with the node
at (z7,y%), and a} is the kth MEI coefficient associated with the node at (z%,yr). The

system of equations defined by (8-10) can be solved efficiently by the Ricatti block-by-
block elimination technique [8] described in Ile. After the scattered field is solved in the
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interior domain, the total field on the scatterer can be recovered from (6). The field at any
point can then be determined from the total field on the scatterer by using the integral

representation given in the next section. In the next few sections, we give details of the

various steps presented in this section.

IIb. Integral Representation:

Fig. 1. shows an electric line source Jo located at O(z,,y,). It is required to find
the total field (E,ﬁ ), at an arbitrary point P(z,,y,) over the irregular, inhomogeneous
terrain. We will employ the reciprocity theorem [2] to express the total field in terms of
the scattered field and an incident field, (Eo,ﬁo), defined to exist over a flat, constant
impedance plane, Cy, of normalized impedance A,. The general relationship between a

surface impedance A and the local ground constants (€o€r, o, o) is

A =1/v/(er = jor), (15)

where o, is the relative conductivity representing o/we,, o being the actual conductivity
of earth. The above relationship is used to evaluate not only A,, but also A, that will
be encountered below. The field (E, H) is different from (E,, I-.70) due to (a) the terrain
inhomogeneities, or (b) terrain irregularities, or (c) both. Let (El,ﬁ 1) be the fields due to
sources (fl, M 1) located at P(z,,y,) over the reference impedance plane. The fields ‘0’ and
‘1’ satisfy the impedance boundary condition X E(ln = 1oA07 X (§ X ﬁ?) on Cy, where
§ is the unit normal on Cy. The total fields satisfy the impedance boundary condition
7 X E= NoAght X (71 X ﬁ) on the terrain surface C, where the impedance A, is possibly
different from A,, and may vary from point to point. The surface C is assumed to consist
of flat portions C5 where the impedance A, deviates from A, and/or C; where the terrain
deviates from being flat. The remaining portion C, of the surface is concident with the
corresponding portions of Cy. The surface Cj is the projection of C; onto Co. Let Coo
be a semicircular cylinder bounded at infinity, and A be the interior region bounded by
the surfaces C and Cs. The unit normal i points into the region A. It is assumed that
the ground deviates from the reference plane orﬂy in the positive y direction. Thus, we
consider only hilly obstacles and do not address the problem of trenches in a flat plane.

The ground constants are, however, allowed to have variations along the terrain.
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The fields (E — Eo, H-H o) have no sources in the region A, and satisfy source-free
Maxwell’s equations, while the fields (El,ﬁl) satisfy Maxwell’s equations with sources

(J1, M;). From a two dimensional version of the reciprocity theorem [2], we have

/[(E—Eo)xﬁl—ﬁlx(ﬁ—ﬁo)] .ﬁde=//[(ﬁ-§0)-fl—(ﬁ-ﬁo)Ml da
A

Cr+Cy+Ct+Coo
‘ (16)

The contour integral over Co, vanishes due to the Sommerfeld radiation conditions [11].
Since (E, H ) and (Eo, ﬁo) satify the same boundary conditions on C., the integral over it

vanishes. Applying reciprocity theorem to the source-free region bounded by C; — Cj, we

obtain :
/ [onﬁl—ﬁlxﬁo]-ﬁdezo, (17)
C,—Cy
Hence
/[Eo x 0 — E xﬁo] -fzdé:/[ﬁo x Hy — B xﬁo] Adl=0. (18)
C: Cs

The last equality follows from the fact that the ‘0’ and ‘1’ fields satisfy the same impedance

boundary conditions on Cj. Making use of these in (16) we get

// (B~ Bo)- 7, - (F - o) - 0] da:/ (Bx ) — By x B)-ade.  (19)
A Ci+C
Next, we pick a 3-directed magnetic line source of unit voltage for M; and choose Ji=0

to arrive at

5. H(p) =2 Ho(P) —/ [ x By B + ( x ) - £7] de, (20)
Ci+C:
where (E§z),ﬁ 1(2)) is the field due to a 3-directed magnetic line source of unit voltage

located at the field point P. We relate (i x H) and (A x E) on Cf + C; by means of the

impedance boundary condition to finally obtain

5 H(P) =2 Ho(P) - / [E;z)(q) — 1o, (7 X ﬁ{”(q))] : (n x ﬁ(q)) dtg.  (21)
C1+C ,




The above equation is rewritten as

H.(P) = Hou(P) - / H.()G(e.P) dlq, (22)
C=C;+C;
where
G(e.P) = B (Q) - n.AHE (@) (23)

is defined as the Green’s function at Q due to a z-directed magnetic line source located at
P over a plane of impedance A,. The unit tangent ? to the contour is defined such that
¢ x i = 3. Equation (22) may be used to set up an integral equation for the unknown
H, and solved numerically. However this will be computationally intensive as already
discussed and will not be considered in the present report. In the next section, we present

expressions for Hy, and G(@,P) which allow rapid numerical computation.

Ilc. Incident Magnetic Field and Green’s Function:

Fig. 4. shows a transversely polarized electric line source located at (z,,y,) over
a plane of constant impedance A,. Due to the impedance boundary condition we have
Eoz = nooHp,. The line source carries a total current I, and has its current moment
directed along the unit vector : which makes an angle 8, with the z-axis. The current
moment corresponding to the mirror image of the source about a perfectly conducting
plane at y = 0 points in a direction 2" which makes an angle 7 — 6y with the z-axis. The

current density of the line source is expressed as

T = i Iok28(z — 2,)6(y — yo) = 2T, (24)

where () represents a unit delta function. The magnetic vector potential A=3A,+74,

satisfies

V2A+ A= —pol. (25)

It is easily seen from Maxwell’s equations that

_w 0A, B 0A,
Ho= 252 - 29
0H,,
Ey, = Jno% (27)
y




Equation (25) can be seperated into its respective cartesian components. A vertical current
excites a vertical component, 4,, of the vector potential, whereas, a horizontal component
excites only a horizontal component, A,. It is to be noted here that a horizontally polarized
line source will only need A, for the satisfaction of the boundary conditions at y = 0. This
is in contrast to the three-dimensional case where a HED requires both A, and A, for the
satisfaction of boundary conditions. We take a Fourier transform on both sides of (25)
with respect to the z-axis, and denote the transformed quantities with a tilde and the
normalized transform variable by k,. When this is done, an inhomogeneous harmonic
equation with respect to y is obtained in the transformed domain. The components of the

vector potential can be determined from it as

N . jkzzo . .
Ap(keyy; ToyYo) = Halo Cerfoﬂe {6"”"”_”‘" +Rh(ﬂ)6’_’ﬂ(y+y°)} (28)
- I 4 6 jkzra X A
Ay(ke,y; 70, 90) = 22 Oszllr:rjoﬁe .{6_]ﬂ|y_y°| +R”(ﬁ)e_1ﬂ(y+y°)}’ (29)

where Ry (8) and R,(B) are the reflection coeficients for the horizontal and vertical polar-

izations respectively, and k2 + % = 1. Imposition of the impedance boundary condition

at y = 0 yields
2A,

B+A,

The components of vector potential in the space domain are obtained by taking the inverse

R,(B)=—Ra(B)=1- (30)

Fourier tranformation of (28) and (29). Letting the free-space Green’s function II as

T e—ilka(z—20)+Bly—v,|

O(z,y;20,Y0) = / e dk, = HO V(@ — ) + (y — 90)%),  (31)

— 00

we arrive at

e I 2 2
A = B0 [i01(a, y320,50) + 7 (2, 3520, —40) = 28,811 (2, 3320000}, (32)

4
where -~
6H( ) / e_j[ﬂ(y+ya)+kz(z—zo)] dk (33)
T,Y5Z0,Yo) = -
Vitodel = | TTRBB+A)

The integral defined in (33) is of the so called Sommerfeld type and difficult to evaluate

directly. To efficiently compute the incident magnetic field and the Green’s function, we
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will incorporate the ideas contained in [12] and [13]. For small distances, we use a modified

method of [13]. For large horizontal distances, where the method of [13] fails, we have used
a modified version of the method in [12].

For small distances, we employ the clever device originally used by Chow, et al., [13]
to calculate the Green’s function for microstrip structures. The key to the procedure is
to convert (31) to an integral over the complex 8-plane and make approximations to (33).
Firstly, we note that the imaginary part of 8 must be chosen appropriately (i.e., ( B) < 0)
such that integral in (31) converges for all |y — y,| > 0. By a change of variable, (31) may

be converted to an integral in terms of § as

e~ I8yl
HOWG =) T (0 =5 = = / T okl —zo)dB,  (34)

T k.
Iy

where the contour of integration, I'y, is shown in Fig. 5. Similarly,

9 e~ iB(y+y,)
11 (a:,y; ToyYo) = - / IR CEYS) cos|k.(z — z,)] dB. (35)
T

The contour of integration for §II may be deformed to a modified contour, Iz, since no
singularities are enclosed between it and I'y (see Fig. 5). The contour I'; consists of two
parts: a straight line, T',, drawn from (1,0) to (0, —jTq), for some chosen positive constant
T,, and a portion coincident with that of I';. Most of the contribution to the integral
comes from the former as the integrand decays exponentially on the latter for sufficiently
large y + y,. The trick is to approximate the spectral function 1/(8 + A,) over Iy as a

finite sum of complex exponentials of the form

Nr
1
—n Y Apeh (36)

The complex constants Ay and ¢ can be determined by the Prony’s method [14]. Substi-
tuting this into (35) we have

NT s .
9 [ e—iB(y+y.—jtk)
611 (z,Y;T0,Yo) R ZAk;r-/ 2 coslkz(z — z,)] dp
k=1 r, z

11




—joo . N
2 [ e iPtye) coslk,(z — z,)) 1 Q
bl z o _ A —tkﬁ d
ta / 3 CET P S
B=—3To

Nt ) 9
= Y ARHG (Ri) + =R [22Ea(22) — 7]
0

k=1
j
- Y Ai[Ei(z2 — jtxTo) + Ex(235 — jtTo)]- (37)
k=1
The first term of the last equality follows by comparison with (34). The quantity Rx is the

distance between the observation point (z,y) and the complex image at (z,, —yo+Jtx) given

by Ri = 1/(z — 7,)? + (y + Yo — jt&)?, with the square root chosen such that R(Ry) > 0,
and z3 = [(y + ¥o) + j(z — z,)]To. The remaining integral in (37) over the negative
imaginary axis has been performed in closed form in terms of exponential integrals, E;(+)
[21], by using the approximations 8 + A, ~ § and k; ~ —jB. The quantity éII can
be calculated much faster using (37) rather than (33) or (35). However, when y + y, is
small and |z — z,| is large, the contribution arising from the tail of I'; becomes important,
and the exponential approximation to the spectral function in (36) requires many terms.
Using only a few terms leads to large errors in the computation of 6II. The accuracy can
be greatly improved at the cost of computational time by expressing the spectral function

1/(8 + A,) over Ty as a Laplace integral of the form

o0

1 — e—Aot — Bt
(EYS / e Pt dt. (38)

Such a procedure was suggested in [12]. The Laplace transform of the spectral function in
(38) converges for —m/2 — arg(A,) < arg(t) < /2 — arg(A,). Substituting this into (35)

and changing the order of integration, we arrive at

611 (2, yi 0 wo) = [ €4 BV (D) (39)

t=0

with the complex distance D = v/(z — z,)? + (y + yo — jt)* defined such that R(D) >0
for representing an outgoing wave and S(D) < 0 for the convergence of the integral. Even

though it is much faster to compute 6II using (39) than using (35), the integration can be
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slow for certain combinations of A,, (¢ — z,), and (y + y,). This is because the integrand
decays rather slowly on the positive real axis of the ¢-plane. To further aid fast evaluation
of the integral (39), we deform the original contour in the complex t—plane to one over
which the asymptotic form of the Hankel function decays most rapidly (steepest descent

path). This is obtained by setting R[D(t)] = R[D(t = 0)] = rz on the deformed contour,

where r; = 1/(z — 2,)2 + (y + yo)? is the distance of the observation point from the mirror
image. If t = u + jv, the steepest descent path through ¢ = 0 can be obtained as

24+ (y+yo)?
u? +r2

u — [0, 00), v=—(y+y0)+rz\/“ (40)

on which the distance function is

o Ju? + (y +yo)? |
D=r, —]u\[ 21 (41)

Evaluation of the integral over the steepest descent path permits rapid computation

of §II. Although this is true uniformly for all z —z¢ and y + yo, 1t is less efficient than (37)
for small values of ro. This is due to the presence of the Hankel function with complex
arguments in the integrand of (39), which, one has to evaluate répeatedly to perform the
infegration. Hankel functions need be computed only for a fixed number of arguments in
(37) in contrast to the several tens of times needed when (39) is used. It is very important
indeed to reduce the time required to compute the incident field and the Green’s function,
particularly when one has to evaluate them several thousands of times as in the present
method. This point will be appreciated shortly when we discuss the MEI method.
Combining (26) and (32) the incident magnetic field can be obtained as

—kol, [ . .
Hy, = 4;. {sm(@o — 91)H§2)(1‘1) + sin(fp + 92)H1(2)(T2)

+2Ao(sin90-a%- +cos€0%)6ﬂ (x,y;xo,yo)}, (42)

where r; = 1/(z — 20)? + (¥ — ¥o)?, and 61(8;) is the positive angle made with the z-axis
by the straight line joining the observation point and the source (mirror image) point.
Using a similar analysis, the Green’s function (defined through (23)) at the point

Q(z4,y,) due to a unit voltage, z-directed, magnetic line source located at P(zp,yp) can




be obtained as

-1, . .
G(Q,P) = 4—j—{sm(9 — ) HP (r3) + sin(6 — 6,)HP (r4) — 5 A, [ng)(m) + Hg”(m)]
12, |58, + 5in8-2- — cos8-2-| 6T1(aq, vy 20 vp) (43)
o |]83s sin 6:% COSs ayq xq,yqaxpayp 3

wherery = \/(zq — 2)2 + (Y — ¥p)?, ra = V{(zg — z)% 4 (yg + yp)?, 63(04) is the positive
angle made with the z-axis by the straight line joining the observation point Q and the

source point P (mirror image), and 6 is the angle made with the positive z-axis by the
unit tangent at Q.

" An integral equation may be derived for the unknown, H, on the scatterer by substi-
tuting the above Green’s function into (22) and taking the limit as the point P approaches

the scattering boundary from outside. When this is done, one gets

H,(P) =2Hy.(P) — 2/ H.(@)G(Q.p)dl,, PQEC;+Ci, (22")

C=C;+C,
where the integral is understood to be of Cauchy’s principal value type. The first term on
the right can be regarded as the physical optics approximation to the surface field in the
illuminated region.
The far-zone (r — oo) fields can be determined by using the principal asymptotic
forms for the various Hankel functions. For the quantity éII, far-zone approximation can
be obtained by deforming the path of the integral in (33) and evaluating by the saddle

point method. The result is

ST (z,Y; ToyYo) ~ 27 i . (44)
1o wry (A, + sinf2)

Having provided the integral representation and expressions for the various fields, we

present in the next section details on the MEI method of terminating the computational

domain in the finite scheme.

IId. MEI Method:
As already remarked, the MEI method allows one to generate near-field conditions for

the scattered field i to simulate free space at the terminating boundary. We will describe
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the procedure to determine the coefficients ax in (7). Mei et al., [4] postulated that there

exists a linear combination of the scattered field over a small, discrete, spatial domain, gk,

such that X«
Yo + Z apr = 0. (45)
k=1

The coefficients aj are postulated to be dependent upon the location of the field and
geometry of the scatterer, but, independent of the excitation of the scattered field. The
last postulate enables one to determine the coeflicients ax using a finite set of linearly
independent scattered fields caused by different excitations. It is not the purpose of the
present report to test the validity of these postulates. Rather, we employ this method to
develop a relatively fast numerical method for predicting both the sky wave as well as the
ground wave for propagation over inhomogeneous and irregular terrain. The starting point
is an accurate representation of near fields such as equation (22). The scattered field is

given from (22) as
WP = p) — HoxD) =~ [ B0 7). (46)
C
Making use of this in (45) we see that
- K
[ {G(px )+ (e, m} at =0, (47)
The specific excitations (which they termed as metrons) suggested by Mei et al., were

H, =1, cos(27s), sin(27s), cos(4ws), and sin(4xs), (48)

where s is the normalized arc length that varies between 0 and 1 on the scatterer. We will
label these as sinusoidal metrons. We were not able to consistently generate meaningful
results using sinusoidal metrons, and thus considered other choices. A closer look at (47)
provides insight as to why the sinusoidal metrons cannot be expected to work all the time.
Since the coefficients ax have been postulated to be independent of the excitation (which
determines H,(p') on the scatterer), it is implied that the terms within the bracket be
identically zero for all points ;;7 on the scatterer. The term g(;? , Pk ) 1s the field at p due
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to a line source located at gx. Hence we require that the field due to a linear combination
of the these line sources (K + 1 in number) vanish pointwise on the scatterer. But this
would be difficult to accomplish as there are only a few discrete sources (K is typically 4-5
depending on the type of the computational molecule chosen). This is particularly true
for a large scatterer. A more reasonable criterion is to require that the field be minimum

in some sense on the scatterer. We choose the coefficients aj so that integrated square

-

C

is 2 minimum on the scatterer. In other words, we determine the coefficients by requiring

residual )

K
G(o', )+ > axG(e, pv)| de (49)

k=1

that 5"’% — 0. This position was first taken by Jetvic and Lee [16], who considered the
k
case of perfectly conducting cylinder to demonstrate the success of this approach. This

criterion results in
K
Zak/g(p,’ﬁk)g*(p,,p_’n)del:—/g(p’,ﬁo)g*(p/,ﬁn)del, n=172)"'7K' (50)
k=1 ¢ C

The coefficients ax can be obtained by solving the linear system defined by (50). We shall
label the particular choice of metrons in (50) as the G* metrons. The coeflicient matrix
in (50) is Hermitian symmetric. The number of integrals required per a five-point star
mesh (K = 4) is 14. If every node is utilized in the evaluation of an integral, the total
number of flops required to perform the integration per a five star mesh is 14N. The
number of Green’s function evaluations per a five-point star mesh is 5N. The total time
required to fill the coefficient matrix in (50) for N nodes on the object boundary is then
14N%t; + 5N%t, = O(N?), where t; and t, are the respective times required per flop and
a single evaluation of the Green’s function. For example, if it takes 1 millisecond for a
single evaluation of the Green’s function, the total time spent in the evaluation of the
Green’s functions for N = 1000 would be 83 minutes. It is therefore very important to
minimize the time required to calculate the Green’s function. The total time needed to
fill the matrices (11) through (14) is still of order O(N?). The fill time may be reduced
approximately by a factor of half by skipping every other point in the evaluation of the
integrals. The next section deals with the inversion of the block system defined in (8-10).
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Ile. Inversion by Ricatti Transform
The overall matrix generated by the block system of equations in (8-10) is highly

sparse and is almost tridiagonal. It may be inverted efficiently by the Ricatti transform

method [8], which was originally described in [17]. To this end we write
v ! =R, ¥"+S,, n=2,...,N, (51)

where the transform matrix R, is of order M x M, and the shift vector S, is of order

M x 1. Substituting into equation (9), we get
U" = — [A.R, + Bo] ' Co¥™! 4 [ALR, + B, [F" — A,S,). | (52)
We then observe by comparing with (51) that forn =2,...,N -1
Ro1=—[AxRa+ B Co,  Snys = [AsRa +Ba]7 [F"—A,S.]. (53)

The end equation (8) may be used to determine the transform matrix R, and S,.

Substituting (51) into (8) and carrying out some algebraic manipulations, we get

R, = (A;C;'A; - B,) ' (C1 - A,C;'B,), (54)
and

S, = (Ay — CLAT'B,) ™ (F? — C,AT'FY). (55)

The higher order matrices can be determined from the above two by using the recursive
relations in (53). Finally, by using the other end equation (10) in conjunction with (51),

we solve for ¥V as
ON = [(An + CNRy-1)RNy + By] 7' [FY = CnSn-1 — (AN + CNRy-1)SN] . (56)

The remaining vectors V=1 WN=2 W can then be determined by the tranformation
equations in (51). Each of the matrices A,, Cn, Sn, and ¥™ has M non-zero elements
while B,, has 3M non-zero elements. The matrix R, is dense and has M 2 elements. The

total number of non-zero elements, N, that need to be stored with this algorithm is then

Ny=(N-1)(M?4+ M)+ 6MN ~ (M +7)MN = O(N). (57)
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For example, with N = 1000 and M = 5, the algorithm needs around 0.96 MB of RAM for
implementation in double precision. If N is now increased to 10,000, the required memory
is increased to 9.6 MB. This is in contrast to the integral equation methods, where, a
scaling in N by a factor of 10 results in 100 fold increase in memory. The inversion time
of the algorithm is only of order O(N). The overall CPU time of the present method is

dominated by the matrix fill time discussed in the previous section.
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III. NUMERICAL RESULTS

The entire code was developed in double precision in FORTRAN. The linear equations
generated by (4) and (5) for the determination of the coefficients cx were solved by Gaussian
elimination. Due to the generation of a highly ill-conditioned matrix, Gaussian elimination
is, however, not reliable for the inversion of the matrix associated with the coeflicients aj.
By treating it as a linear least square problem, we have used Singular Value Decompsition
(SVD) [19] to construct a minimum norm solution to the matrix equation. SVD is also
appropriate for the case of sinusoidal metrons where we generate more equations that the
number of unknowns. The effective rank of the matrix is determined by treating as zero
those singular values which are less that a predetermined number ‘Reond’ times the largest
singular value. The condition number, k3, of the matrix in the 2-norm is the ratio of the
highest singular value to the lowest singular value. Of course, if Rcond is set less than the
infimum of 1/k over all the nodes on the boundary, SVD uses all the singular vectors and
produces the same result as Gaussian elimination for a square matrix. Integration in (46)
was performed by the Simpson’s rule either using all nodes on the scatterer or using every
other node. The latter reduces the integration time by a factor of half. The geometry of the
scatterer was specified in a discrete form by the nodes at which the unknowns are defined.
Interpolation with quadratic elements [20] was used to generate a continuous object. In
this way the code was capable of handling a rather arbitrary geometry. The various Hankel
functions with complex arguments in (37) and (39) were generated by implementing the

algorithm of du Toit [15].

To verify calculations by the complex image approach of section Ilc, we first present
results on the computation of the incident magnetic field. Fig. 6 shows the magnitude of
the normalized magnetic field due to a vertically polarized line source on the surface of a
flat, lossy plane. The ground constants correspond to €, = 15 and o, = 6. The magnetic
field is normalized to the free-space value, which is true of all the results shown in the
report. The constant Tp was chosen to be at least 5 to make the approximation in (37)
valid. Fourteen complex images were chosen to approximate the spectral function, although
10 were found to produce identical results. Expression (37) was used for r, < 50, while

(39) was used otherwise. The upper limit for u on the steepest descent path in the integral
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(39) is determined such that the imaginary part of the complex distance D takes a value
of 5. The arc length value in Fig. 6 is equal to zero right under the source. Comparision is
shown with the calculation based on Sommerfeld integral given in [1]. Excellent agreement
is seen between the two, thus validating the complex image aproach. Several other cases
have also been successfully tested including the cases of large conductivity such as €, = 10,
and o, = 200. Where applicable, we used Ny = 10 and T = 5 in the numerical results

shown in this report.

We next compare the numerical results for propagation over a semicircular boss on
a perfectly conducting plane (A, = 0), for which the exact solution in terms on cylin-
drical harmonics exists [1]. Results are shown both for the sinusoidal metrons and the
G* metrons. A vertically polarized source (f, = 90) was assumed to be located at
(—0.75X,0.1)) near a semicircular boss of radius 0.5\ with center at the origin. Six layers
(M = 4, recalling that M denotes the number of interior layers not counting the object
and outer boundaries) with an inter-layer spacing, k, of 0.05A were used to discretize the
computational domain. The distance between the outermost layer and the object bound-
ary is (M +1)h = 0.25). The outer boundary was discretized into roughly twenty segments
per wavelength resulting in N = 49. Rcond for SVD was set at 1.D-6. The arc length, S,
takes a value 0 at the left end of the boss and increases in the clockwise direction. Fig.
7 shows a good agreement for the magnitude of the surface magnetic fields between the
numerical and the exact results both for the sinusoidal and G* metrons. The supremum,
Q (indicated as ‘Con’ in the plots), of the 2-norm condition number of the 4 x 4 coefficient
matrix in the case of G* metrons, and the 5 x 4 matrix in the case of sinusiodal metrons
over all nodes on the boundary is also indicated on the plot. Fig. 8 shows a comparison
of the relative pattern of the source in the presence of the boss. Good agreement is seen
except near the grazing angles in the shadow region where a discrepancy of about 2 dB
is seen. The accuracy of the solution can be affected by varying Rcond, M,N and h.
While it is generally true that the accuracy improves when M or N is increased or when
is h decreased, difficulty to compute the various quantities precisely over a small, discrete,
spatial domain tends to obscure this. The last two parameters affect the discretization

errors, while M and h together influence the distance between the object boundary and

20




the outer boundary. All other paramaters being fixed, if M is increased and h is decreased
while maintaining a constant seperation between the object and outer boundaries, the so-
lution improves only slightly as indicated in Figs. 9 and 10. In Fig. 9 we use M = 6 and
h = 0.0357), while in Fig. 10 we use M = 8 and h = 0.0278). The slight improvement
over the results of Fig. 7 is thought to be due to a decreased discretization error achieved
by the use of smaller h. Compared to Fig. 7 it is also seen that () increases in both cases.
This is due to the larger size of the matrices involved. The effect of integration on the
numerical solution was also investigated. In one case, integration was performed by using
all nodes on the boundary, while in the other case every other node was used. The former
is labeled as full integration, while the latter as half integratioh. Fig. 11 shows the results
with full and half integration. The solution is less sensitive to integration for the G* case
than it is for the sinusoidal metron case. This trend has been noticed for other shapes
as well. To see the effect of node density on the solution, the number of segments on the
outer boundary was increased to 29 per wavelength. This was with a view to increase
the accuracy of the solution. Fig. 12 shows the solution with the higher node density.
The G* metron solution appears to have improved slightly, whereas the sinusoidal metron
case deteriorated slightly when compared with the 20 segment/wavelength case of Fig. 9.
Note the increase Q for both cases when compared to Fig. 9. This is because the fields
calculated over a small spatial domain tend to be more linearly dependent than over a

larger domain.

Parametric studies were also made for larger cylinders. Fig. 13 shows the results
for a radius of 5A. With the indicated choice of parameters, the nurﬁber of nodes on the
boundary is N = 331. Once again the agreement between numerical and exact results is
good. Some spurious oscillations are, however, seen in the numerical solution in the last
part of the shadow region. The total computational time needed on a 80486-50 Personal
Computer for the calculation of ground wave data at 331 points and the far-zone data at
181 angles utilizing every other point for integartion was 2—;— minutes. Almost all of the
time was required for filling the various matrices, with the inversion taking only a paltry
1 second. Fig. 14 shows the relative pattern of the source. It is seen that a slightly better

agreement is obtained with the sinusoidal metrons than with the G* metrons. As in the
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previous case the accuracy improved only slightly when the number of interior layers is
increased without changing the distance between the object and outer boundaries. This is
clearly seen from Figs. 15 and 16 which show results for M = 6 and M = 8 respectively.
For the sinusoidal case, however, the result with M = 8 is once again less accurate when
compared with M = 4. Increasing Rcond had no effect on the solution. However, when
the number of segments on the outer boundary is increased to 34 per wavelength, a more
accurate solution is obtained as seen in Fig. 17. At this node density the spacing between
nodes on the object boundary is the same as h. Fig. 18 shows the numerical solution
with the higher node density of 34 segments per wavelength for M = 8 and h = 0.0278).
For the G* metron case the solution remains practically unchanged from that of Fig.
16, but the result for sinusoidal metron case is more meaningful with the higher node
density. The effect of moving the terminating boundary further away from the object
boundary is seen by examining Fig. 19. For the parameters indicated, the outer boundary
is at a distance of 0.45) from the cylinder. For the G* metron case, the hump in the
solution around S = 70 is still present, although an improvement is seen at the left end
of the boss (the illuminated side). Overall, the G* solution agrees better with the exact
solution when compared with Fig. 13 where the seperation between the boudaries is 0.25A.
Increasing the node density to 34 per wavelength did not improve the solution any further.
Further improvement in the solution can be affected by decreasing h which decreases the
discretization errors. This is clearly seen from Fig. 20 where the solution with A = 0.035A
compares better than the one with A = 0.05A. The spurious oscillations can be reduced
by (i) increasing the seperation between the object and the terminating boundaries, and
(i) concurrently discarding those singular vectors that are corrupted by roundoff errors.
The latter is accomplished by decreasing Rcond during the SVD solution of the coefficients
ak. In general, it has been found that for a given spatial resolution, the coefficient matrix
becomes more ill-conditioned (as evidenced by a higher condition number) as the seperation
between the object and outer boundaries gets larger. Consequently, Rcond has to be set
a lower value in order to achieve a meaningful solution. Fig. 21 shows the solution for a
separation of 0.6 and Rcond=1.D-4. The accuracy is seen to be the best of all the results

shown so far. If however, only an approximate solution is desired, the parameters of Fig.
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13 are sufficient. The results seem to suggest that the accuracy depends primarily on
the distance between the object boundary and the outer boundary provided that various
quantities are calculated precisely. Twenty segments per wavelength, six layers, and an
interlayer spacing of A/20 seem to produce reasonable results for most cases. If G* metrons

are used, integration can be done using every other point.

Next, we consider an obstacle that has both concave and convex potions. A good
candidate is the case of a gaussian hill for which results are available in the literature [18].
Such a hill has also been considered in [1]. The height of the hill, hy(z), over the y = 0
plane is given by

hy(z) = Ael==B)/CP,

We have choosen A = C = 10)/3, B = 0. The obstacle is taken as the portion of the
gaussian hill where the height exceeds A/100. For the chosen parameters, this occurs for
|z | < 8). The total arc length of the obstacle is about 18X. The constitutive parameters
of the earth are taken as ¢, = 10,0 = 10mS/m at a frequency of IMHz. The latter
corresponds to o, = 180. A vertically polarized source is located at (—50A/3,1/100) to
the left of the hill. Fig. 22 shows the incident magnetic field, Hy,, on the hill normalized
" to the free-space value. The dashed line corresponds to the field over a flat surface. The
quantity 8II in (42) has been calculated using (39) since r; > 50 on the obstacle. As
expected, the field matches at the two ends of the obstacle with the field over a flat
surface. In [18] the solution is obtained via Volterra type integral equation starting from
parabolic approximation of the Helmholtz equation. By its very nature, the method of [18]
considers one-way propagation and ignores backscattering. The present method, on the
other hand, makes no such approximations. Fig. 23 compares the numerical solution of the
present method with that of [18]. Both the G* and the sinusoidal metron solutions have
been obtained with 20 segments per wavelength node density, six layers, h = 0.05), and
Rcond=1.D-6. For these values of parameters, the number of unknowns on the obstacle is
361. Full integration was employed in both cases. The solution obtained with G* metrons
agrees fairly well the results of [18], whereas the one with sinusoidal metrons is highly

erroneous. The increased field strength on the illuminated side is due to focussing by
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the concave portion of the hill. The G* metron solution correctly predicts it. No such
focussing is present in the incident field as can be observed from Fig. 22. Thus, physical
optics cannot be expected to predict the correct field on the surface. It is to be noted
that the erroneous result with sinusoidal metrons is not due to round off errors, for the
G* solution has a higher condition number and still produces a good result. This was also
checked by repeating the numerical solution with various values of Rcond. The sinusoidal
metron solution remained erroneous irrespective of the value of Reond. In an attempt to
improve the solution, a higher node density of 30 segments per wavelength was also tried.
However, the soiution only worsened. It is concluded that the sinusoidal metrons are not
satisfactory for arbitrary shapes and that they do not lead to the correct values of the MEI
coefficients. Choice of metrons is not arbitrary as the originators of the MEI method claim.
The G* metrons have a physical significance in that they represent the fields generated by
line sources in an environment compatible with the original problem. No such statement

can be mode concerning the sinusoidal metrons.

It is interesting to compare the merits of the present method with G* metrons vis —
a — vis the method of [1] which solves the problem using a magnetic field integral equation
and boundary element method. It took 5 minutes and 20 seconds on a 80486-50 PC to
produce the results for the ground wave data shown in Fig. 5 as well as to generate sky
wave data at 181 angles. Identical results were obtained with half integration which took
only 3 minutes. This is in contrast to the method of [1] which took 75 minutes for the same
problem. Of course [1] uses the free-space Green’s function in contrast to the half-space
Green’s function employed here. The number of unknowns in [1] was 725 (obtained with
12 nodes per wavelength). For the same number of unknowns, the present method, being
of order O(N?), would take about 21 minutes, which is still faster by a factor of about
four. If half integration is used the method is faster by a factor of eight. The savings in
memory in the present method are tremendous. For the problem at hand, the method of
[1] with 725 unknowns requires a storage space of at least 8.4 MB compared to only 254
kB needed with the present method. To speed up the calculation of the Green’s function
we have assumed A, = 0 in (43). This amounts to assuming that the terrain outside the

obstacle is made up of a perfect conductor. This results in substantial savings in time.
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For example, it took 3 hours and 10 minutes on a 80486-50 PC to solve the problem of
gaussian hill using the exact Green’s function and half integration, compared to only 3
minutes with the approximate Green’s function! The results were identical except near
the right end of the hill where the two differed slightly. The value at z — z, = 160 was
1.2 with the exact Green’s function compared to about 0.9 with the approximate Green’s
function. One would expect the use of approximate Green’s function to be the worst when
A, is significantly different from zero. We considered the case of highly lossy earth with
€, =5 and 0 = 0.056mS/m at 1 MHz (¢, = 1). A gaussian hill with A = X\, B =0, and
C = 0.76X was considered. A vertically polarized source is placed at (—3X,A/10). Six
layers were chosen with h = 0.05) and integartion was performed utilyzing all the nodes.
Fig. 24 shows the calculations with the exact and the approximate Green’s functions. The
field that would exist on flat earth is also shown. Calculations with the exact Green’s
function took 30 seconds while those with the exact Green’s function took 45 minutes.
However, it is seen that the results do not differ much from each other, justifying the use

of the approximate Green’s function.

It is possible to increase the accuracy of the numerical results shown in Fig. 23 by
increasing the seperation between the obstacle and the outer boundary. Fig. 25 shows
calculations with 6, 8, and 10 layers all with A = 0.05\. It is seen that the result with
10 layers is generally in best agreement with the results of [18]. The numbers indicated
within the paranthesis in the caption are the values of Reond assigned in each case to the
first 15 wavelengths and the last 3 wavelengths respectively on the boundary. As discussed
previously, the condition number increases generally as the seperation is increased. We
selectively filter out the singular vectors which are highly corrupted by roundoff errors by
choosing a higher value of Rcond. The far-zone fields are however insensitive to the slight
variations of the surface fields. Fig. 26 shows the relative pattern of the source with 6 and
8 layers. It is seen that the two cases produce virtually the same results. The radiation
pattern of the source in the direction of the hill is highly perturbed by the presence of
the latter. Away from the hill the relative pattern in the presence of the hill is not very
different from the pattern of a vertical source in free-space except near grazing angles

where it has a deep minimum.
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Finally, we present results on the effect of relative location of the source with respect
to the obstacle on the fields. A vertically polarized source was placed near a gaussian hill
having A = 1.2),B =0, and C = X. The total arc length of the obstacle is 5.1A. The
ground constants were €, = 14.9,0, = 14.58. Six layers with 20 segments per wavelength,
and h = 0.05\ were chosen in the numerical model. In one case the source was placed at
the bottom of the hill at a horizontal distance of 4.53\ from the peak. In the second case
the source was placed at the top of the hill (z, = 0). Fig. 27 shows the normalized ground
wave on the hill. Once again there is focussing on the illuminated side of the hill when
the source is at the bottom. The field for the source at the top of the hill is symmetric
as expected. Note that the field in the shadow region of the hill for 7o = —4.53) is as
strong as the corresponding field for zo = 0. There is no apparent advantage of siting the
antenna at the top of the hill to receive the ground wave. However, the radiation pattern
of the source from ¢ = 0 to 90° is significantly affected by the presence of the hill. This
can be seen from Fig. 28 which shows the relative pattern for the two source locations.
Irrespective of the source location, the radiation pattern has a deep minimum near grazing

angles as is characteristic of vertical antennas over lossy earth.
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IV. SUMMARY

A fast, finite difference method that includes all aspects of wave phenomenon such
as reflection, refraction, diffraction, and backscattering is presented for predicting two di-
mensional propagation over inhomogeneous, irregular terrain. The terrain is characterized
by its elevation and impedance, which, in turn depends on the ground constants of the
earth. Both of these may vary with distance. The terrain topology data is specified at
discrete points. Interpolation using quadratic elements is done to define a continuous ge-
ometry. The computational domain for the problem consists of the area bounded by the
terrain at the bottom and a truncating boundary at the top. To simulate free-space on the
truncating boundary, discrete, near-field radiation condition of Mei type, derivable from
an integral representation of the fields, is imposed. Green’s function for half-space is used
to reduce the number of unknowns. Unknowns are distributed on the terrain only where
its elevation is non-zero and/or where its impedance differs from a reference value. The
computational domain is discretized using interior layers between the truncating and the
object boundaries. Finite difference coeficients valid for an irregular, non-othogonal mesh
are presented. Accurate expressions are provided for the Green’s function and incident
fields over a constant-impedance, flat plane. The expressions permit rapid computation as
they do not involve the troublesome Sommerfield integrals. Results are presented for the
ground wave as well as the sky wave.

The truncating boundary can be in the near-field of the obstacle; as near as a A/4
away from it, and the method works both for concave and convex geometries. Good results
have been obtained with a node density of about 20 per wavelength and an interlayer
spacing of about A/20. The metrons used for the determination of the Mei coefficients are
proportional to the complex conjugate of the Green’s function and fully accomodate the
environment of the problem. Singular value decomposition which permits filtering of the
space spanned by the corrupted singular vectors is used to solve for the coefficients.

The method is attractive for large terrain obstacles where other methods tend to
be slow. The overall computational time of the method is of order O(N?). Storage re-
quirements are of order O(N), where N is the total number of unknowns (nodes). As an

example, for a terrain obstacle extending over 18 wavelengths, the number of nodes on the
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boundary is 361. To compute ground wave data at all of these nodes as well as to compute
the far-fields at 181 angles, the method takes around 3 minutes on a 80486-50 PC. The
total storage required for the problem is around 254 kB. It would take around 300 minutes
with a storage space of around 2.5 MB to solve the problem of a terrain where the obstacle
extends over 180 wavelengths. At a frequency of 1 MHz the terrain obstacle corresponds
to one whose arc length is 54 km. At a frequency of 1 GHz it corresponds to an arc length
of 54 m.

Certain spurious oscillations and over estimation of the field have been observed in
some regions of the shadow region. This is attributed to the fact that it is difficult to
calculate near-fields precisely over an electrically small, discrete domain. These extraneous
effects can be some what reduced by increasing the seperation between the obstacle and
the truncating boundary. It is speculated that they can be further reduced by choosing a
computational molecule that accomodates higher order derivatives. More efficient schemes
of evaluating the Green’s function and the near-fields will have to be made to further
reduce the computational time.

Extension to the three dimensional case is trivial in principle, although not so com-
putationally. Savings over integral equation methods will be even more dramatic in the
case of three dimensional obstacles. Although the Green’s function using complex images
will be little more involved than for the two-dimensional case, it will have the computa-
tional advantage of being expressible in terms of an exponential functions instead of Hankel
functions with complex arguments. The fields decay more rapidly with distance in three
dimensions than in two dimensions. As a result integration could be done little more effi-
ciently in the former case. The corresponding computational molecule will now consist of
seven nodes instead of five in two dimensions. Finite difference and terminating boundary
conditions will have to be developed for vector fields instead of scalar fields. These task

are presently being pursued.
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